0%

SERIE DE HOJAS INFORMATIVAS SOBRE EL «GREENWASHING»

Qué te cuenta la industria de la aviación y qué NO

Lo que debemos saber sobre las promesas de descarbonización y las falsas soluciones

The aviation sector and their lobby are working hard to maintain their climate damaging growth path. As a reaction to the rising public and political awareness of the climate harming effects of aviation, the sector makes promises of green flying through technology to ensure there are no effective regulations to achieve a real reduction of aviation and its emissions.

 

By taking a closer look at what the industry tells us and what they don’t tell us, in our new fact sheet series we debunk common misconceptions and look behind the green curtain of their promises

  • Eficiencia
  • Vuelo eléctrico
  • Hidrógeno
  • Biocombustibles
  • E-carburantes
  • Emisiones netas cero
  • Compensaciones de carbono
  • Tecnologías de emisiones negativas

Mejoras en la eficiencia

La eficiencia de las aeronaves se refiere a la cantidad de combustible quemado (y las emisiones producidas) por una aeronave para transportar su carga útil (pasajeros o carga) una distancia determinada (por ejemplo, un kilómetro). Las mejoras de eficiencia (es decir, la reducción del consumo de combustible) se logran optimizando el diseño de las aeronaves, los motores, las operaciones de la aerolínea (por ejemplo, la trayectoria de vuelo) y aumentando la cantidad de pasajeros/carga transportada a bordo de la aeronave.
El CO2/pasajero-km es proporcional a la eficiencia (combustible/pasajero-km).

WHAT THEY TELL YOU WHAT THEY DON’T TELL YOU
Flying can be decarbonised by improving aircraft efficiency. History shows us that “efficiency improvements” have always been accompanied by increased emissions! This is because efficiency improvements also reduce the cost of
flying and contribute to air traffic growth, leading to emissions growth which far outpaces the emissions reductions
of efficiency gains.
Supporting aircraft technology development and air traffic optimisation will have a beneficial environmental impact. Emissions reductions through efficiency gains can also be cancelled out by airlines upgrading the class of seats, and by flying further or faster.
Therefore: financial restrictions on airlines such as increased pricing or fuel taxes shouldn’t be imposed, as this will reduce profit available to invest in new technologies and processes. Therefore: we need further measures to limit emissions such as increased pricing or fuel taxes to incentivise less fuel burned. Such policies will actually accelerate efficiency improvements.

 

Vuelo eléctrico

Los sistemas de propulsión de aeronaves eléctricas suelen implicar propulsores de aeronaves (palas de hélice o álabes de ventilador) que son impulsados por motores eléctricos. En los aviones «totalmente eléctricos», estos motores funcionan con energía eléctrica suministrada directamente por baterías o pilas de combustible de hidrógeno (véase la hoja informativa 3). En los aviones «híbridos-eléctricos», estos motores eléctricos actúan en serie, o en paralelo, con un motor de combustión alimentado por combustible de aviación.
WHAT THEY TELL YOU WHAT THEY DON’T TELL YOU
Electric aircraft will be “zero emissions”. Electric aircraft will NOT be “zero emissions” until the electric grid is fully decarbonised.
Electric flight is an efficient mode of transport. Electric flight is NOT efficient compared to public transport on the ground (rail, coach)
Their contribution to decarbonising aviation will be significant. Any contribution to decarbonising aviation will be severely limited by range and payload.
They will be available soon. The only aircraft likely to be certified this decade will be very small and we won’t see larger aircraft before 2050, too late to prevent climate breakdown.

Vuelo de hidrógeno

Se planea utilizar hidrógeno como fuente de energía para aviones en lugar de queroseno. Podría quemarse en un motor de reacción o utilizarse para alimentar una celda de combustible que genere electricidad para alimentar una hélice. Se necesitan otras fuentes de energía para producirlo, pierde una importante cantidad de energía durante el proceso de producción y se almacena normalmente en estado líquido a -253 °C.
WHAT THE AVIATION
INDUSTRY TELLS YOU
WHAT THEY DON’T
TELL YOU
Happening soon
New aircraft propelled by hydrogen could enter into service by 2035.
Too late
If it happens, it will come much too late to tackle the climate
emergency.
  Not for medium and long-haul flights Hydrogen will not be viable for medium and long-haul flights before 2050. Until then, only the regional and short-haul market should be targeted, a large part of which can be substituted by road or rail.
Zero emissions
When burned or used in a fuel cell, hydrogen does not produce any CO2, only water.
Not zero emissions
Hydrogen-powered aircraft will not have zero emissions, even if hydrogen is produced from renewable electricity, because it will still emit NOx and generate contrail cirrus that have a higher climate impact than CO2 today.
  Huge energy consumption
The deployment of “green” hydrogen in aviation would require huge quantities of renewable electricity, which would deprive other sectors needing to decarbonise.
  Success not assured
Hydrogen-powered aircraft exist only on paper. Before it becomes a reality, many problems must be solved, especially in the field of safety, and new technologies must be developed.
Government support required
Public money is needed for funding for hydrogen aircraft development and to subsidise hydrogen production.
Financial support from governments means taxpayers pay
…most of whom never fly.

Biocombustibles

Aviation biofuel is a liquid hydrocarbon fuel that can be used with existing aircraft blended with fossil kerosene. Like e-fuel (see Fact Sheet #5 Synthetic e-fuels), the sector calls it a “Sustainable Aviation Fuel” (SAF), which it is not, as we demonstrate in this fact sheet.

Biofuels for aviation are produced from biomass sources and hydrogen. First generation biofuels use agricultural crops. Due to their drawbacks, the sector is mandated by European legislation to use so-called “waste and residues”, either industrial, food, farm and forestry.
At present, the only aviation biofuel of this kind proven at scale, HEFA (Hydrogenated Esters and Fatty Acids), are made from feedstocks labeled as “used cooking oils” or “animal fats” (from slaughterhouse operations).

However there is rampant mislabeling of these feedstocks, including, for example, virgin palm oil labeled as used cooking oil. So-called “advanced biofuels” from lignocellulosic biomass (wood, straw…) have never been and are unlikely to ever be technically proven at scale. Hydrogen, although rarely mentioned, is required in all certified aviation biofuel production processes, but is today mostly produced from fossil fuels (see Fact Sheet #3 Hydrogen flight).

WHAT THEY TELL YOU WHAT THEY DON’T TELL YOU
Biofuels play a key role in decarbonising aviation and are already being used today. There are plans to scale them up which will allow us to meet increasing air travel demand while still reducing emissions. Biofuels are a false response to the climate emergency: They divert biomass from food production, biodiversity protection and natural carbon sequestration. They also compete with other sectors for the same scarce resources. Anyway, the transition to biofuels has barely begun (0.3% in 2024) and plans to scale them up are far too slow and unrealistic. The only way to rapidly reduce aviation emissions is to reduce air traffic now.
Aviation biofuels could significantly reduce CO2 emissions, by up to 80% vs. fossil jet fuel. Aviation will not use biofuels from crops which have sustainability issues. Biofuel still produces significant CO2 emissions. When made from crops or palm oil mislabeled as used cooking oil, biofuel results in even more GHG emissions than fossil fuels. This would also be the case if the fuels were made from wood or straw. ls from crops are widely used despite major issues: they account for ⅓ of the current and planned supply worldwide. They compete with food production and have serious humanitarian, environmental, health and biodiversity impacts.
Aviation will instead use biofuels from “sustainable waste and residues” that will not compete with agriculture or cause adverse environmental or social impacts. The new generation of biofuels is a smokescreen: only biofuels from “waste” oil & fat are available on the market and only in limited quantities which should be prioritised for other purposes. In addition, they are often fraudulently replaced by virgin oils.
Government support is required. Due to the significant extra cost, public money is needed to keep travel costs low, so that aviation growth is not affected. Financial support from governments means taxpayers pay, most of whom rarely or never fly. Subsidies divert money needed for more essential sectors.

 

Infographic Factsheet Biofuels UCOs Keep Frying to Keep Flying

Electrocombustibles sintéticos

Los combustibles alternativos para aviones o los llamados «Combustibles de Aviación Sostenibles» (SAF) son combustibles líquidos de hidrocarburos que pueden utilizarse con los aviones existentes en lugar del queroseno producido a partir de combustibles fósiles. La premisa de la industria de la sostenibilidad de estos combustibles es crear el combustible utilizando CO2 tomado de la atmósfera, en lugar de utilizar combustibles fósiles extraídos de las profundidades del subsuelo que luego emitirán CO2 adicional a la atmósfera cuando se quemen. El argumento es que la mezcla de estos combustibles con combustibles fósiles reduciría así las emisiones.

El combustible alternativo para aviones se puede clasificar en dos variedades:

  • Biocombustibles producidos a partir de fuentes de biomasa (véase la ficha informativa 4)
  • Electrocombustibles sintéticos (e-fuels) producidos a partir de electricidad (explicados a continuación)

Los electrocombustibles sintéticos o «e-fuels» se pueden producir combinando hidrógeno con carbono para crear un hidrocarburo líquido. Para minimizar las emisiones, el hidrógeno debe extraerse del agua mediante electrólisis utilizando energías renovables; y el carbono debe extraerse del aire mediante un proceso llamado «Captura directa de aire» (DAC). A continuación, se pueden combinar para formar un combustible de hidrocarburo utilizando la síntesis de Fischer-Tropsch (FT)1. Estos últimos procesos también deben ser alimentados con energía renovable.

Los e-combustibles también se conocen como combustibles «Synfuels» o Power-to-Liquid (PtL). Los e-combustibles, al igual que los biocombustibles, son combustibles directos que podrían mezclarse con el combustible fósil convencional para aviones (queroseno) y ser utilizados por la flota existente.

A primera vista, los e-fuels parecen ser el arma definitiva para descarbonizar la aviación: deberían poder utilizarse directamente en todo tipo de aviones actuales, sea cual sea su autonomía; no sufren limitaciones de materia prima porque se fabrican a partir del agua y el aire, que son recursos muy abundantes; Y la electricidad necesaria podría generarse a su vez a partir del sol y el viento, que son energías muy abundantes.
Entonces, ¿por qué todavía no hay aviones propulsados por estos combustibles y muy pocos durante otros diez años más o menos?
Principalmente porque la producción de e-fuels es extremadamente derrochadora de energía.
Privaría a otros sectores que necesitan descarbonizarse, ya que no habrá suficiente energía renovable disponible para satisfacer todas las necesidades en las próximas décadas.
También porque se trata de una nueva industria que comienza casi desde cero, que todavía necesita completar el desarrollo de procesos y establecer un sector completamente nuevo.

WHAT THEY TELL YOU WHAT THEY DON’T TELL YOU
Happening soon
E-fuels could start to be blended with kerosene in 2030.
Too late
E-fuels do not address the climate emergency. Although the technology has been demonstrated, it’s still at the pilot stage and several decades of heavy investment would be needed to scale up production.
Zero emissions
Their production would not cause any CO2 emissions and their combustion would just return to the atmosphere the CO2 from where it would be extracted
Not zero
Even if CO2 emissions can theoretically be reduced down to zero, they would still generate NOx and contrail cirrus that have twice as much climate impact than CO2 today.
Requires huge quantities of renewable electricity
E-fuels require even more energy to produce than hydrogen, which would deprive other sectors needing to decarbonise.
Very low energy efficiency
No more than about 10% of the electricity used would be converted into thrust to move an aircraft, whereas it can be used with a much better efficiency in most other applications.
Government support required
Due to the significant extra cost governments should provide financial support for e-fuels, so that aviation industry growth is not affected.
Financial support from governments means taxpayers pay
Most of whom rarely or never fly… Subsidies for e-fuels risk wasting public money on an expensive solution and would keep flying artificially cheap, resulting in more air traffic and emissions than if the industry paid.

 

Cero neto y neutralidad de carbono

Alcanzar los objetivos de «cero emisiones netas» es actualmente el objetivo central establecido en casi todas las estrategias climáticas, ya sea de la industria o del gobierno. Por su parte, el sector de la aviación se ha comprometido a alcanzar las cero emisiones netas deCO2 en 2050.

Según el IPCC1, las cero emisiones netas deCO2 se logran cuando las emisiones antropógenas deCO2 restantes se equilibran a nivel mundial con las absorciones antropogénicas de CO2. Esto significa que con el concepto de cero neto, todavía se permiten algunas emisiones «difíciles de reducir», siempre que se eliminen de la atmósfera cantidades equivalentes deCO2. Las cero emisiones netas deCO2 también se conocen como neutralidad de carbono. Cuando se tienen en cuenta todos los gases de efecto invernadero, esto se conoce como emisiones netas cero.

Se promete equilibrar las emisiones residuales a través de la eliminación de dióxido de carbono; se trata de una serie de procesos que eliminan elCO2 de la atmósfera, además de la eliminación mediante procesos naturales del ciclo del carbono. Puede lograrse mediante el aumento de los sumideros biológicos o geoquímicos de CO2 o mediante el uso de procesos industriales para capturar CO2. La eliminación de dióxido de carbono es uno de los dos tipos de compensaciones de carbono2 , además de los créditos por emisiones «evitadas».

WHAT THEY TELL YOU WHAT THEY DON’T TELL YOU
Reaching net zero will prevent climate breakdown. If we balance CO2 emissions to net zero by 2050, then we’ll align with the Paris Agreement goal for global heating not to exceed 1.5 °C. Too slow, too late. All that matters is the cumulative emissions in the atmosphere. So net zero by 2050 will be irrelevant if aviation’s fair share of the global carbon budget for 1.5 °C is exceeded long before 2050.
We have the technology. There are a range of technological options that can be relied upon to provide credible emission pathways towards net zero whilst still allowing air traffic to grow. Technology is unproven and resource intensive. We cannot wait: we need to reduce emissions now, which means decreasing air traffic.
Resorting to CO2 removal will be necessary. We’ll not be able to reduce all aviation CO2 emissions by 2050 and therefore will need to resort to CO2 removal to reach net zero. Appropriation of CO2 removal by aviation would not be equitable. One sector cannot appropriate the limited potential of CO2 removal to offset its own remaining emissions, thus buying its way out. What we need instead is a fair, global allocation of the remaining carbon budget.
Non-CO2: Not enough data, no action. Effects of non-CO2 emissions are not well enough understood and quantified to be included in net zero plans. Non-CO2: Too large to be ignored. The precautionary principle therefore requires that they are also included and reduced.
We are addressing the issue. Net zero plans are a means of taking responsibility for climate impacts and mitigation. Our children will pay the price. Corporations and governments use the net zero by 2050 goal to diminish the sense of urgency, disguise inaction today and evade responsibility.

Compensaciones de carbono

Una compensación de carbono es una «unidad» de emisiones de gases de efecto invernadero (GEI) que una entidad (supuestamente) reduce, evita o elimina de la atmósfera y otra entidad la compra para tratar de compensar sus propias emisiones.

Las compensaciones de carbono juegan un papel importante en muchos de los planes actuales de reducción de emisiones y pueden ser parte de esquemas de tope y comercio como en California.
Sobre la base de proyectos que se encuentran principalmente en el Sur Global, los estados y las empresas (principalmente en el Norte Global) están utilizando las compensaciones para lograr el cumplimiento.
La mayoría de las operaciones se realizan en mercados de carbono específicos.

El sector de la aviación hace un uso extensivo de la compensación de carbono.
El organismo responsable de la ONU, la OACI (Organización de Aviación Civil Internacional), ha acordado un plan común para los vuelos internacionales llamado CORSIA (Esquema de Compensación y Reducción de Carbono para la Aviación Internacional).

Algunos países o regiones tienen esquemas de compensación específicos
para vuelos dentro de sus fronteras. A los viajeros aéreos también se les puede ofrecer comprar compensaciones cuando compran boletos de aerolíneas o agencias de viajes, o incluso pueden venir incluidos en su paquete. Los aeropuertos también están utilizando directamente las compensaciones para cubrir las emisiones terrestres y utilizarlas como incentivo para que las personas utilicen su «aeropuerto verde», independientemente de las emisiones de los aviones.

 

WHAT THEY TELL YOU WHAT THEY DON’T TELL YOU
Essential: Aviation emissions are ‘hard to abate’, so carbon offsets will be essential to achieve ‘carbon-neutral growth’ under CORSIA (2021-2035)(1) and ‘Net-Zero CO2 emissions by 2050’(2) Fundamentally flawed: Carbon offsetting does not reduce emissions. It diverts projects that are essential to achieving global climate objectives to justify further growth in air transport. Furthermore, tree planting and forest protection projects, the most popular categories, have no guarantee of permanence and cannot be scaled up
globally due to the lack of available land.
Certified: The quality of carbon offsets is guaranteed
through global standards and third-party certifications.
Ineffective or fraudulent: Many offset projects do not
meet quality standards and open the door to fraud.
Immediate action: Large quantities of carbon credits from valuable projects are available on the market and waiting to be funded. Postpone action: Offsets distract from the urgent need to reduce aviation emissions to meet climate targets. They increase the risk of climate chaos, postpone action and serve as a licence to pollute.
Fair: As flying is so important to society and the global economy – rather than flying less – it is fair to keep increasing aviation emissions and pay to reduce emissions elsewhere, or to remove CO2 from the atmosphere, when it is more cost effective. Unfair: Carbon offsets are unjust as they justify high emissions from a wealthy minority, while grabbing resources that are essential to the majority, like land for growing food or restoring biodiversity.
Better than taxes: Offsetting is a better alternative to green regulations, like taxes and limits on air traffic
growth, that reduce profit available for aviation companies
to invest in new technologies and fuels. 
Far too cheap: Carbon credits are so cheap that offsetting schemes will not reduce demand, which is essential to reduce emissions.

Tecnologías de Emisiones Negativas

Al igual que la mayoría de los gobiernos y muchos sectores, el sector de la aviación tiene el objetivo de emisiones «netas cero» para 2050. Esto no cumplirá con los objetivos del Acuerdo de París sin ambiciosas reducciones a corto plazo de las emisiones que parecen incapaces o reacios a cumplir (ver Hoja informativa # 6: Cero neto y neutralidad de carbono). Justifican la continuación de altos niveles de emisión, o incluso el aumento de las emisiones, planificando el uso de emisiones negativas [también conocidas como «Eliminación de Dióxido de Carbono» (CDR) o «Eliminación de Gases de Efecto Invernadero» (GGR)] en un futuro bastante lejano. Sin embargo, como se explica en esta hoja informativa: esta es una estrategia peligrosa e imprudente.

Las «Tecnologías de Emisiones Negativas» (NETs) se refieren a los procesos industriales (en lugar de los procesos naturales como el crecimiento de los árboles) que eliminan activamente el dióxido de carbono (CO2) capturándolo de la atmósfera y almacenándolo, supuestamente de forma permanente. Las tecnologías usualmente propuestas son: (1)

  • Captura y almacenamiento directo de carbono en el aire (DACCS): captura de CO2 directamente de la atmósfera a través de procesos industriales y lo almacena bajo tierra.
  • Bioenergía con Captura y Almacenamiento de Carbono (BECCS): produce energía a partir de biomasa y luego almacena parte del carbono resultante bajo tierra o en el suelo.
WHAT THEY TELL YOU WHAT THEY DON’T TELL YOU
WE NEED NETs: We can continue to emit now, and recapture CO2 later, in order to continue growing air traffic. WE NEED TO REDUCE FLYING, NOW: Relying on NETs –not available at any significant scale for decades – provides aviation with a ‘licence to pollute’ which will contribute to heating the atmosphere beyond 1.5°C.
PROVEN: Processes to remove CO2 from the atmosphere work and have been demonstrated. UNPROVEN: both DACCS and BECCS are unproven at
scale and present a high number of severe technical,
economic, humanitarian and environmental risks.
EFFICIENT: NETs can immediately and safely remove large quantities of CO2 from the atmosphere and store it permanently. INEFFICIENT: These processes are massively energy- and resourceintensive. It doesn’t make sense to waste scarce energy and resources on NETs rather than use them to decarbonise other activities more efficiently
LOW-COST: Their cost may be high today but costs will decrease when scaled up. HIGH-COST: Even with optimistic efficiency improvements, NETs will remain energy and resource-intensive and therefore expensive well into the future.
FAIR: As flying is so important to society and the global economy – rather than flying less – it is fair to keep increasing aviation emissions and pay to remove CO2 from the atmosphere, when and where it is more cost effective. UNFAIR: NETs are unjust as they justify high emissions from a wealthy minority, while grabbing resources that are essential to the majority. There is also an intergenerational injustice.
GOVERNMENT SUPPORT REQUIRED: Due to their significant high prices, governments should provide financial support for NETs, to shield air travellers from these costs and so that aviation growth is not affected. SUBSIDISING HAS PERVERSE EFFECTS: Any taxpayer money would incentivise continued fossil fuel extraction and emitting of carbon for as long as possible, in order to maximise the profits of the fossil fuel industry today and the size of the atmospheric CO2 removal market tomorrow.

 

Si bien el desarrollo de nuevas tecnologías y combustibles puede ser útil, no puede ser una excusa para retrasar las reducciones de emisiones que se necesitan AHORA para mitigar la crisis climática. La única forma de reducir eficazmente las emisiones de la aviación es reducir los viajes aéreos. Para lograrlo, necesitamos regulaciones efectivas que limiten el tráfico aéreo

En nuestro informe sobre el decrecimiento de la aviación , exponemos cómo un conjunto de diversas medidas podría conducir a una reducción justa de la aviación. En nuestro Documento de Debate sobre Transición Justa , presentamos la idea de cómo una reconversión de la industria de la aviación debe y podría garantizar la seguridad para el sustento de los trabajadores. Para obtener información más detallada sobre las compensaciones, los sistemas de comercio de derechos de emisión y la mercantilización de la naturaleza, consulte nuestro informe sobre Green Flying.